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Outline

§ Deep RL – Value methods
§ Deep RL – Policy methods



Function approximation for value and policy

§ What if we use deep neural networks directly to approximate 
these functions?



End-to-end reinforcement learning

Traditional computer vision

Deep learning

Traditional RL

Deep RL

§ Deep RL enables RL algorithms to solve complex tasks in an end-to-end manner.
Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-1.pdf



Deep RL

§ New challenges when we combine deep learning with RL?
§ Value functions and policies become deep neural networks
§ High-dimensional parameter space
§ Difficult to train stably
§ Prone to overfitting
§ Requires large amounts of data
§ High computational cost
§ CPU-GPU workload balance

Agent

Environment

Interaction

Data



Value methods: DQN

§ Deep Q-Network (DQN)
§ Uses a deep neural network to approximate Q(s,a) 

§ → Replaces the Q-table with a parameterized function for scalability

§ The network takes state s as input, outputs Q-values for all actions a simultaneously

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.



DQN (cont.)

§ Intuition: Use a deep neural network to approximate Q(s,a) 
§ Instability arises in the learning process

§ Samples {(s!, 𝑎!, 𝑠!"#, 𝑟!)} are collected sequentially and do not satisfy the i.i.d. 
assumption

§ Frequent updates of Q(s,a) cause instability

§ Solutions: Experience replay
§ Store transitions 𝑒! = s! , 𝑎! , 𝑠!"#, 𝑟! in a replay buffer D

Sample uniformly from D to reduce sample correlation
• Dual network architecture: Use an evaluation network and a target 

network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Target network

§ Target network 𝑄$!(𝑠, 𝑎)
• Maintains a copy of the Q-network with older parameters 𝜃$

• Parameters 𝜃$ are updated periodically (every C steps) to match the evaluation 
network

§ Loss Function (at iteration 𝑖)

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



DQN training procedure

§ Collect transitions using an ε-greedy exploration policy
§ Store {(s! , 𝑎! , 𝑠!"#, 𝑟!)} into the replay buffer

§ Sample a minibatch of 𝑘 transitions from the buffer
§ Update networks:

§ Compute the target using the sampled transitions
§ Update the evaluation network Q$
§ Every C steps, synchronize the target network 𝑄$! with the evaluation 

network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



DQN performance in Atari games

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Overestimation in Q-Learning

§ Q-function overestimation
§ The target value is computed as:
§ The max operator leads to increasingly larger Q-values, potentially 

exceeding the true value

§ Cause of overestimation

§ The chosen action might be overestimated due to Q-function error



Degree of overestimation in DQN

§ Overestimation increases with the number of candidate actions

§ A separately trained Q’-function is used as a reference



Overestimation example in DQN

§ Setup: The x-axis represents states, and each plot includes 10 candidate actions. The purple curve denotes the true Q-
value function, the green dots are training data points, and the green lines are the fitted Q-value estimates.

§ The middle column shows the estimated values 𝑄!(𝑠, 𝑎) for all 10 actions. After applying the max operator, the results 
deviate significantly from the true values 𝑄∗(𝑠, 𝑎).



Double DQN

§ Uses two separate networks for action selection and value 
estimation, respectively.

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)



Experimental results in the Atari environment

§ Value estimation error

§ Atari game performance



Dueling DQN

§ Assume the action-value function follows a distribution:

§ Then:

§ How do we describe 𝜀(𝑠, 𝑎)?

§ This term is also known as the Advantage function 

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)



Dueling DQN (cont.)

§ Advantage function

§ Different forms of advantage aggregation



Network structure 

§
Q-value

Value

Advantage function



Advantages of Dueling DQN

§ Effective for states weakly correlated with actions
§ More efficient learning of the state-value function

§ The value stream V(s) is shared across all actions, allowing the network 
to generalize better across actions

saliency maps

•The value stream allows the agent to evaluate how good a 
state is without considering the specific action taken.

•The advantage stream emphasizes action-specific importance: 
for instance, it can learn to focus more when an obstacle (e.g., 
a car) appears in front of the agent, thereby guiding more 
precise action selection.



Experimental results in the Atari environment I

Compared with DQN



Experimental results in the Atari environment II

Compared with DQNCompared with Double DQN



Deep RL – Policy-based methods
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Review: The policy gradient theorem

§ The policy gradient theorem generalizes the derivation of 
likelihood ratios to the multi-step MDP setting.

§ It replaces the immediate reward 𝑟! with the expected long-term 
return 𝑄"(𝑠, 𝑎).



Review: Policy Gradient in a Single-Step MDP

§ Consider a simple single-step Markov Decision Process (MDP)
§ The initial state is drawn from a distribution:
§ The process terminates after one action, yielding a reward 𝑟%&

§ Expected Value of the Policy



Review: Likelihood Ratio Trick

§ Use the identity:

§ The gradient of the expected return can be written as:

Can be 
approximated by 
sampling s from 

d(s) and a from 𝜋#



Policy network gradient

§ For stochastic policies, the probability of selecting an action is 
typically modeled using a softmax function:

§ 𝑓,(𝑠, 𝑎) is a score function (e.g., logits) for the state-action pair
§ Parameterized by 𝜃, often realized via a neural network

§ Gradient of the log-form



Policy network gradient (cont.)

§ Gradient of the log-form

§ Gradient of the policy network

Back propagation Back propagation

1. Rollout
2. Train another 

network



Comparison: DQN v.s. Policy gradient

§ Q-Learning: 
§ Learns a Q-value function 𝑄$(𝑠, 𝑎) parameterized by θ
§ Objective: Minimize the TD error



Comparison: DQN v.s. Policy gradient

§ Q-Learning: 
§ Learns a Q-value function 𝑄!(𝑠, 𝑎) parameterized by θ
§ Objective: Minimize the TD error

§ Policy gradient
§ Learns a policy 𝜋$(𝑎 ∣ 𝑠) directly, parameterized by θ
§ Objective: Maximize the expected return directly



Limitations of policy gradient methods

§ Learning rate (step size) selection is challenging in policy gradient 
algorithms
§ Since the data distribution changes as the policy updates, a previously 

good learning rate may become ineffective.
§ A poor choice of step size can significantly degrade performance:

§ Too large → policy diverges or collapses
§ Too small → slow convergence or stagnation



Trust Region Policy Optimization (TRPO)

§ Two forms of the optimization objective
§ Form 1: Trajectory-based objective
§ Form 2: State-value-based objective



Optimization gap of the objective function

§ New policy 𝜃’ and old policy 𝜃

Sampling 
inconvenience

Definition of J(𝜃’)

Initial distribution is 
independent of 𝜃



Review: Policy Iteration (PI) in MDP

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

1. Improvement: Does each policy improvement step produce a better policy? 
2. Convergence: Does PI converge to an optimal policy? 



Importance sampling

Importance sampling𝑝#$, approximation



Ignoring the difference in state distributions

§ When the change between the old policy 𝜋$ and the new policy 𝜋$" is 
small, we can approximate
§ For deterministic policies:

The probability that is less than a small threshold 𝜖.
§ For stochastic policies:

The probability that is less than 𝜖.



TRPO Policy Constraint

§ Use KL divergence to constrain policy update magnitude:

§ In practice: use penalized objective with KL divergence penalty instead 
of hard constraint

§ Update 𝜃’ and



TRPO Monotonic Improvement Guarantee



Principle of TRPO



TRPO Drawbacks

§ High variance from importance weights
§ Difficult to solve constrained optimization



Proximal Policy Optimization (PPO)

§ Clipped Surrogate Objective

Construct the lower bound: 

Equivalent at r=1:



PPO: improvement over TRPO

§ 1.Clipped surrogate objective



PPO: improvement over TRPO

§ 2. Adaptive penalty parameter

§ Adjust the penalty coefficient β dynamically:
§ Compute the KL value
§ If d < target / 1.5 → βß β / 2
§ If d > target × 1.5 → βß β × 2

Note: Here, 1.5 and 2 are empirical parameters, and the algorithm performance is not very sensitive to them



PPO experimental comparison

7 continuous control environments
3 random seeds
Each algorithm runs 100 episodes, repeated 21 
times
Scores normalized to best model achieving 1.0



PPO in MuJoCo



PPO in ChatGPT



GRPO in deepseek



Summary

§ 1. Value-based deep RL
§ DQN
§ Double DQN
§ Dueling DQN

§ 2. Policy-based RL
§ Policy gradient
§ TRPO
§ PPO
§ GRPO


