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" Deep RL —Value methods
" Deep RL — Policy methods



Function approximation for value and policy
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" What if we use deep neural networks directly to approximate
these functions?



End-to-end reinforcement learning
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Deep RL

= Deep RL enables RL algorithms to solve complex tasks in an end-to-end manner.

Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-1.pdf



Interaction
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" New challenges when we combine deep learning with RL?

Value functions and policies become deep neural networks

High-dimensional parameter space
Difficult to train stably

Prone to overfitting

Requires large amounts of data
High computational cost

CPU-GPU workload balance



Value methods: DQN

" Deep Q-Network (DQN)

= Uses a deep neural network to approximate Q(s,a)
= —> Replaces the Q-table with a parameterized function for scalability

" The network takes state s as input, outputs Q-values for all actions a simultaneously

Convolution Convolution Fully connected Fully connected
w A s w

of | B /m

ot | /s L\
B-oeom -0 :o:

o | O

of] | E \m

¢

AR vy ]
[ BX BN BN BN BY BX B ~ €« ¥ £
HEBEEERERACRAREAR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.



DQN (cont.)

" |Intuition: Use a deep neural network to approximate Q(s,a)

" [nstability arises in the learning process

= Samples {(s¢, a¢, S¢+1, 7¢) } are collected sequentially and do not satisfy the i.i.d.
assumption

" Frequent updates of Q(s,a) cause instability

" Solutions: Experience replay

= Store transitions e; = (S, s, S¢4+1,73) in a replay buffer D
Sample uniformly from D to reduce sample correlation

* Dual network architecture: Use an evaluation network and a target
network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Target network

* Target network Qg-(s, a)

* Maintains a copy of the Q-network with older parameters 6~

 Parameters 8~ are updated periodically (every C steps) to match the evaluation

network

= Loss Function (at iteration i)

2

Li(6) = Esqapsesarope-n |3 @t + 7 max Qo (ses1,@") — Qg (5, a)Y?]

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavuke
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DQN training procedure

" Collect transitions using an e-greedy exploration policy

= Store {(s¢, ¢, S¢4+1,7+) } into the replay buffer
= Sample a minibatch of k transitions from the buffer
" Update networks:

= Compute the target using the sampled transitions
* Update the evaluation network Qg

* Every C steps, synchronize the target network Qg- with the evaluation
network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



DQN performance in Atari games
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“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Overestimation in Q-Learning

= Q-function overestimation
* The target value is computed as: Y¢ =1 TV rr:la,lx Qo (s¢+1,a’)

" The max operator leads to increasingly larger Q-values, potentially
exceeding the true value

= Cause of overestimation
{9251( Qo' (St+1,a’) = Qgr(S¢4q,arg HE}X Qo' (St+1,a"))

" The chosen action might be overestimated due to Q-function error



Degree of overestimation in DQN

= Overestimation increases with the number of candidate actions

e Bl max, Q(s,a) — Vi(s)
1.0 mm Q(s,argmax,Q(s,a)) — Vi(s)
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" A separately trained Q’-function is used as a reference



Overestimation example in DQN
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Setup: The x-axis represents states, and each plot includes 10 candidate actions. The purple curve denotes the true Q-
value function, the green dots are training data points, and the green lines are the fitted Q-value estimates.

The middle column shows the estimated values Q; (s, a) for all 10 actions. After applying the max operator, the results
deviate significantly from the true values Q. (s, a).



Double DQN

" Uses two separate networks for action selection and value
estimation, respectively.

DQN y: =1 +vQo(St+1,ar8 max Qo(St+1,a'))

“~

Double DQN Y: =1t + V¥

(5t+1,2rg max Qp (5e41,a")

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)



Experimental results in the Atari environment
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Dueling DQN

= Assume the action-value function follows a distribution:

Q(s,a) ~N(u,0)

= Then: V(s) =E[Q(s,a)] = pu Q(s,a) = u+|e(s,a)

= How do we describe £(s,a)?

£(s,a) =0Q(s,a) —V(s)

" This term is also known as the Advantage function

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)



= Advantage function  A7(s

Q(s,a;0,a,p)

Q(s,a;0,a,p)

=V(s;0,B) +

Dueling DQN (cont.)

Q™ (s,

,a) = Q"(s,a) — V(s)

a) = E[R;|s; = s,a; = a, ]

VT (s) = Eq-n(s) Q" (s, a)]

= Different forms of advantage aggregation

(A(s,a;0,a) — rr}szﬁﬂA(S a’;0,a))

=V(s;0,p) +

(A(s,a;0,a) — |A|z A(s,a’;0,a))
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Advantages of Dueling DQN

" Effective for states weakly correlated with actions
" More efficient learning of the state-value function

" The value stream V(s) is shared across all actions, allowing the network
to generalize better across actions

VALUE ADVANTAGE

*The value stream allows the agent to evaluate how good a
state is without considering the specific action taken.

saliency maps

VALUE ADVANTAGE

*The advantage stream emphasizes action-specific importance:
for instance, it can learn to focus more when an obstacle (e.g.,
a car) appears in front of the agent, thereby guiding more
precise action selection.



Experimental results in the Atari environment |
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Experimental results in the Atari environment ||
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Deep RL — Policy-based methods
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Review: The policy gradient theorem

" The policy gradient theorem generalizes the derivation of
likelihood ratios to the multi-step MDP setting.

" |t replaces the immediate reward r; with the expected long-term
return Q™ (s, a).

O _

a0

g

logmg (als

a0

Q"0 (s,a)

Policy Gradient in a Single-Step MDP

= Consider a simple single-step Markov Decision Process (MDP)

® The initial state is drawn from a distribution: s ~ d(s)

= The process terminates after one action, yielding a reward 75,

= Expected Value of the Policy

J(©) = Eqy 1] Zd(s)zne(cns)r

Likelihood Ratio Trick

6](9) Zd( )Zaﬂe(als) -

= Use the identity: ~ 97a(als) — np(als) amg(als)
a6 ( |s) o6
31 g ( [s)

= mg(als)

= The gradient of the expected return can be written as:

J(©) = Egylr] = Z"’()Z 0(@lsYia
WSy,




Review: Policy Gradient in a Single-Step MDP

" Consider a simple single-step Markov Decision Process (MDP)
= The initial state is drawn from a distribution: s ~ d(s)

" The process terminates after one action, yielding a reward 7,

" Expected Value of the Policy

J©) = Egylr] = ) d(s) ) mp(als)rg

SES acA

a](9) z ()zaﬂe(GIS)

SES acA




Review: Likelihood Ratio Trick

» Use the identity:  97me(als) _ 1 0dmg(als)
y a0~ el S T a6
B dlogmg(als)
= mg(als) EY:

" The gradient of the expected return can be written as:

J©) = E,lrl = ) d(s) ) 74 @l

5 ( ) sEéS‘ ( |a§A
] 6 Ttg(a|S
Ed( )Z Tsa
SES AEA  cesssasresevenc '_____I
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Policy network gradient

" For stochastic policies, the probability of selecting an action is

typically modeled using a softmax function:
ef@(sla)
Za, efG(S'a,)

mg(als) =

" fo(s,a)isascore function (e.g., logits) for the state-action pair
* Parameterized by 0, often realized via a neural network

" Gradient of the log-form

dlogmg(als) _ dfe (s, a) Z ofo s,a’ afg(s a'")
90 06 Z ,efe(S a’)

_Of(sa) o 0fo(s, a’)
~ 99 erme@lD | g



Policy network gradient (cont.)

" Gradient of the log-form

dlogmg(als) B Afe(s,a) E dfg(s,a’)
90 EL a'~mo(@'ls) | g
" Gradient of the policy network
] 1. .Rollout
a]a(gg) = lEne _aloggge(alS) Q"0 (s, Cl)] * Tranetwo::

(0fg(s,a) 0fo(5,a)|\ on
=]E7t9 ( 669 _]Ea'~n9(a’|s)[ 669 ])Q G(S,a)]

) \
1 1

Back propagation Back propagation



Comparison: DQN v.s. Policy gradient

= Q-Learning:
" Learns a Q-value function Qg (s, a) parameterized by 0

= Objective: Minimize the TD error
1
J(6) = Ey |5 (e +¥ max Qg (s041,@) = Qo (50,20’

dj(6)
6 « O—QW

aQG (Sr Cl)

= 0+ aE, [(rt +y max Qpr(se41,0) — Qo (5 @) ) —5,
a




Comparison: DQN v.s. Policy gradient

= Q-Learning:
» Learns a Q-value function Qg (s, a) parameterized by 0

= QObjective: Minimize the TD error
" Policy gradient
" Learns a policy mg(a | s) directly, parameterized by 6

= Objective: Maximize the expected return directly
max J(0) = Ep,[Q7(s, )]

9] () dlogry (als) -
— e
Y 0+ aE,, PY: Q"9(s,a)

0 <0+«



Limitations of policy gradient methods

" Learning rate (step size) selection is challenging in policy gradient
algorithms

= Since the data distribution changes as the policy updates, a previously
good learning rate may become ineffective.

= A poor choice of step size can significantly degrade performance:

= Too large - policy diverges or collapses
" Too small = slow convergence or stagnation @

FTRER
IR



Trust Region Policy Optimization (TRPO)

" Two forms of the optimization objective
= Form 1: Trajectory-based objective J(8) = Erepyr)[Xe v 7 (st ap)]

= Form 2: State-value-based objective J(8) = Eg ~p,(se) [V (S0)]




Optimization gap of the objective function

. ) . ](0) — IET~p9(‘c) [Ztytr(str at)]
" New policy 8" and old policy 6 J(8) = Eg -y sy [V (50)]

](0,) _](9) = ](0’) - IEso~p(so) [_VTH (SO?I

= IET~p91(T) [2 ytATO(sq, a,)]
i t=0 *

Sampling
inconvenience A™0 (s, a) = QT0(s¢, ap) —V™ (s¢)



Review: Policy Iteration (Pl) in MDP

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) ZT<s mi(s),s") |R(s,mi(s),s") + vV i(s))]

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) [R(s, a,s’) + vVﬁi(S/)}

8,

1. Improvement: Does each policy improvement step produce a better policy?
2. Convergence: Does Pl converge to an optimal policy?




Importance sampling

A™0 (s;, a;)
70— 1(6) — Q70 (s,, a) V7 (s,)
= 1:~P 1(T) [2 ytAne (St at)]

= z IESt~p9’ (St) []Eat~7t9/(at |St) [ytAne (St' a’t)]]
t

- E E [77"9’(at|5t) tAms (s, a,)]]
st~Pg! (st) L a~mg(At|St) g (atlst) )4 t) At
t é h

Do, approximation Importance sampling



lgnoring the difference in state distributions

= When the change between the old policy Ty and the new policy gy is
small, we can approximate pg(s;) = pgr(st)

= For deterministic policies:
The probability that Tgr(S¢) # g (S¢) is less than a small threshold €.

= For stochastic policies:
The probability that a’~71'9,(- |s;) # a~ g (- |sg) islessthane.

. T ,(a |S ) —
J(6") =1 (8) = %t Esimpy(so) [Eayrg(ae|se) sy ¥ 4™ (e a1l




TRPO Policy Constraint

" Use KL divergence to constrain policy update magnitude:

mgr(aclse) ,
TS Y A™O (se, ap)]]

such that Eg, ., (s)[Dxe (”9’ (aclse) Il o (atlst))] S€

' < arg mgarlxz Esi~po(se) [IEat~7T9(at|St)[
t

" |[n practice: use penalized objective with KL divergence penalty instead
of hard constraint
Tgr(at|se)

/ tpm
0" « arg n}ga}x Z Es~pg(se) []Eat~n9(at|5t)[n9 (a¢|sg) AT (s adll

—A(Dg(myr(aclse) | mg(aelse)) — €)

= Update 6’ and 4 « A + a(Dgy (g (aclsy) Il mg(azlsy)) — €)



TRPO Monotonic Improvement Guarantee

J(@') = Lg(68") — C - DF;**(0,08"),where C =
P

///
/

/
//

Le(8") = J(6) + Z ]ESt~P9(St) [Eat~”9(at|5t)[
t

€y _ A
(1 _ y)z y€ = I‘l:gl%Xl TL'(S' Cl)l

mgr(ag|se)
g (alse)

ytA"O (st, ar)]]




Principle of TRPO

Gradient Ascent Optimization in Trust Region



TRPO Drawbacks

Use KL divergence to constrain policy update magnitude:

mor(aelse) , -
sy (5]

such that E, g (s, [Dic (g1 (aclse) 1l g (acls,))] < e

0" « arg “};”,"‘2 Ese~po(so) [ Ear~mg(ar]sy)l
t

" |n practice: use penalized objective with KL divergence penalty instead
of hard constraint
Tgr(at|St)

/ tpm
0" « arg InBE,lX Z IESt"'pB(St) [IEat~ﬂe(at|St)[7t9 (at |St) 4 4 O(St’ at)]]
t

—A(Dg (mgr(aglse) Il mg(aglsy)) —€)

= Update 8’ and A « A + a(Dg (g (aclse) | mg(aglsy)) — €)

" High variance from importance weights
= Difficult to solve constrained optimization



Proximal Policy Optimization (PPO)

" Clipped Surrogate Objective

Tlg (at|3t) A

conservative —_ "
A | = Eg [rt (9>At]
g 14 (atlse)

policy iteration

LCPI (0) — Et [

LCLP(9) = E,|min(r,(6)A,, dlip(r:(8),1 —€,1 + €) 4, )]

A<O
JCLIP A>0

Construct the lower bound: LCLIP(9) < LCPI(Q)

_\ Equivalent at r=1: LELIP(9) = [CPI(g)

1L i
0 1 1+¢ LCLIP




PPO: improvement over TRPO

" 1.Clipped surrogate objective

~ | melatlse) - = A
LCPI(9) = E [ Al = E;|r(0)A
‘ ”eold(at|5t) g t[ ‘ t]

conservative
policy iteration

LCLP(9) = E,|min(r,(6)A,, dlip(r:(8),1 —€,1 + €) 4, )]



PPO: improvement over TRPO

= 2. Adaptive penalty parameter

LKLPEN (g) — i, [nzc(f(ljj;)t) A, — BKL[mg (- Isp)|me (: |St>]]

= Adjust the penalty coefficient B dynamically:
= Compute the KLvalue d = E, {KL[ngold (- Isg)|mg (- |St)]J
" Ifd<target/15>B<B/2
" |[fd>targetx 1.5 > P& B x2

Note: Here, 1.5 and 2 are empirical parameters, and the algorithm performance is not very sensitive to them



PPO experimental comparison

No clipping or penalty: Li(0) = 7 ('H_)fi,
Clipping: Li(6) = min(ry ('9)44;. clip(r¢(#)).1 —e, 1 + F)At
KL penalty (fixed or adaptive) Li(0) = r ((f)}i, — BKL|mg_,,, 7o)
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7 continuous control environments e & & —
No clipping or penalty -0.39
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times Chppu.lg. € = 0.3 | 0. ;.()
, o Adaptive KL diare = 0.003 0.68

Scores normalized to best model achieving 1.0 Adaptive KL deore = 0.01 0.74
Adaptive KL d¢are = 0.03 0.71

Fixed KL, 3 =0.3 0.62

Fixed KL, 8 = 1. 0.71

Fixed KL, 8 = 3. 0.72

Fixed KL. 3 = 10. 0.69
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PPO in ChatGPT
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GRPO in deepseek

Group Relative Policy Optimization In order to save the training costs of RL, we adopt Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), which foregoes the critic model that is
typically the same size as the policy model, and estimates the baseline from group scores instead.
Specifically, for each question g, GRPO samples a group of outputs {01,02,--- , 06} from the old
policy mg,,, and then optimizes the policy model ¢ by maximizing the following objective:
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where ¢ and B are hyper-parameters, and A; is the advantage, computed using a group of
rewards {ry,r,...,rg} corresponding to the outputs within each group:

ri —mean({ry,r2, - ,rc})
Ai - ' 3
std({r1,r2, -+ ,16}) N




Summary

= 1. Value-based deep RL
= DQN
= Double DQN
= Dueling DQN
= 2. Policy-based RL
= Policy gradient
= TRPO
= PPO
= GRPO



